Peter Almström Technology Management and Economics

Predetermined Time Systems and SAM

CHALMERS

Peter Almström Technology Management and Economics

Learning objectives

- After this lecture the students will be able to...
 - Explain the historical development of PTS
 - Motivate the use of PTS
 - Select appropriate PTS for the task depending on length of work cycle and type of work
 - Use the SAM method

Peter Almström Technology Management and Economics

Predetermined time systems

- Other names:
 - Basic motion times
 - Synthetic times
 - Elementary times
 - Predetermined motion time system
 - Swedish: Elementartidssystem

Time for an element

- The time for an element depends on:
 - -Distance of movement
 - -Force (weight, resistance)
 - Precision

CHALMERS

Peter Almström Technology Management and Economics

Predetermined time application

1. Standard data development

- Efficient development of standard times
- Sort of simulation, use in early phases
- 2. Judgement of "a fair day's work"
- 3. Methods analysis

MTM – worker acceptance

- Doing a fair day's work. Fairness vs. coworkers, fairness vs. employer.
- Performing a task according to optimized work methods in an optimized work environment.
 - Fatigue-free work
 - -Avoiding monotonous strain and overburdening,
 - Work station adapted to the physical requirements of the employees

CHALMERS

Peter Almström Technology Management and Economics

History of work studies

Peter Almström Technology Management and Economics

Frederick Winslow Taylor

(1856-1915)

CHALMERS

Peter Almström Technology Management and Economics

"We can see our forests vanishing, our water-powers going to waste, our soil being carried by floods into the sea; and the end of our coal and our iron is in sight. But **our larger wastes of human effort**, which go on every day are less visible, less tangible, and are but vaguely appreciated."

Taylor (1911)

What Taylor wanted:

- Increase Productivity (elminate waste)
- High wages <u>and</u> Low labour cost (WIN -WIN)

What Taylor needed to deal with:

- Very low productivity
- Soldiering (taking it easy, working at low performance level)
- · Great in-equalities
- Abundance of low-cost labour

CHALMERS

Peter Almström Technology Management and Economics

The Principles

- *First.* They develop a <u>science for each element</u> of a man's work, which replaces the old rule-of" thumb method.
- Second. They <u>scientifically select and then train</u>, teach, and develop the workman, whereas in the past he chose his own work and trained himself as best he could.
- Third. They heartily cooperate with the men so as to insure all of the work being done in accordance with the principles of the science which has been developed.
- Fourth. There is an almost equal <u>division of the work</u> and the responsibility between the management and the workmen. The management take over all work for which they are better fitted than the workmen, while in the past almost all of the work and the greater part of the responsibility were thrown upon the men.

The criticism: The biggest bastard ever!

Taylor's followers

- Gilbreth (1911): All human work can be reduced to 17 movements: Therbligs <u>http://www.youtube.com/watch?v=IDg9REgkCQk</u>
- Abuse of the system:(1914) US law prohibiting stopwatch time studies in all public businesses.
- Segur (1926): Motion-Time analysis
- Maynard, Schwab and Stegemerten (1948): MTM-1

CHALMERS

Peter Almström Technology Management and Economics

MTM-1

Assar Gabrielsson

H B Maynard

6.—Transport empty (right hand).

Peter Almström Technology Management and Economics

International MTM Directorate

- Maintaining the standard
- MTM-1 and MTM-2
- Approved high level: UAS and SAM (not MOST !)

CHALMERS

Peter Almström Technology Management and Economics

Time Measurement Unit - TMU

TMU	Seconds		Hours
1	0,036	0,0006	0,00001
100	3,6	0,06	0,001
28	1		
1667	60	1	

MTM-1 (Therbligs)

- Reach R
 - Example: R20B = Reach 20 inches to an object in location that may vary slightly.
- Move M
 - Distance, weight, and precision affects.
- Turn T
- Apply pressure AP

CHALMERS

Peter Almström Technology Management and Economics

MTM-1 (Therbligs cont.)

- Grasp G
 - Easy to hard (interference or small size)
- Position P
- Release R
- Disengage D
- Eye travel ET, Eye focus EF
- Body, leg, and foot motions

Simultaneous motions

- Always separation left and right hand motion.
- Rules for possible combinations of simultaneous motions.

CHALMERS

Peter Almström Technology Management and Economics

MTM-2

- Single basic MTM-1 motions
- Combinations of MTM-1 motions
- Use when
 - The effort portion of the work cycle is more than one minute.
 - The cycle is not highly repetetive.
 - No complex simultaneous motions.

MTM-2: 11 categories

- GET
- PUT
- GET Weight
- PUT Weight
- Regrasp
- Apply pressure

- Eye action
- Foot action
- Step
- Bend and arise
- Crank

CHALMERS

Peter Almström Technology Management and Economics

MTM-2 Simultaneous motions

*O = Outside; W = Within normal vision

Peter Almström Technology Management and Economics

MTM Methods Analysis						Page of
Operation: T-SHIAT TURNING Study No.: (MANUAL) Date: 2-12-93 Analyst: AF	14	Remarks:	Η ΑΝυ Το ΤΑ	AL HA	NDL 141	<i>iNG</i> TMUs
Description	No.	LH	TMU	RH	No.	Description
GET T-SHIRT		6318	18	GB 18		GET T-SHIRT
REACH INSIDE, PINCH CUSTH		GC12	23	GC 12		REACH INSIDE, PINCH CLOTH
SI'N ULTANEOUS MOTION		GCZ	14	GCZ		SIMULTANEOUS MOTION ALLOW
PULL SLEEVE UP AND OUT		PC 32	41	R32		PULL SLEEVE UP AND OUT
SIMULTANEOUS MOTION ALLOW.		ACZ	21	PC2		SIMULTANEOUS MOTION
SET T-SHIRT DOWN		PB18	24	PB18		SET T-SHIPT DOWN
			(4)			

CHALMERS

Peter Almström Technology Management and Economics

MOST – Maynard Operation Sequence Technique

Kjell Zandin, Scania, 1967

- Basic MOST (1-3 min)
- MiniMOST (< 1,6 min, > 1500 times/week)
- MaxiMOST (> 2 min, < 150 times/week)

Peter Almström Technology Management and Economics

UNIVERSAL ANALYZING SYSTEM - UAS

MTM-UAS was developed between 1976-78 by a consortium composed of:

Deutsche MTM Vereinigung Swiss MTM Association Austrian MTM -Group

CHALMERS

Peter Almström Technology Management and Economics

Sequential Activity and Method analysis

Most slides are made by Jonas Laring, Chalmers

Design principles - SAM

- 1. Sequential analysis form GET + PUT + USE + RETURN
- 2. Minimize user deviation
 - Subjective decisions must be binary
 - Purpose based variables of GET resp. PUT, not behaviour based
 - Group or eliminate difficult decisions
 - (on the expense of system deviation)
- 3. Accuracy is gained by specific Repetitive Sequences
- 4. No MTM pre-training requirement

MTM-1

Sequence - Tool handling

CHALMERS

Peter Almström Technology Management and Economics

Peter Almström Technology Management and Economics

Sequence - Object handling

Three categories of activities							
 * Basic activities GET (G) PUT (P) * Supplementary activities APPLY FORCE (AF) STEP (S) BEND (B) 	 Repetitive activities SCREW (S) CRANK (CA) TO AND FROM (FA) HAMMER (H) READ (R) NOTE (N) PRESS BUTTON (PA) 						

Several activities can be specified further by Variables.

CHALMERS
UNIVERSITY OF TECHNOLOGY

Peter Almström Technology Management and Economics

																				Regu	nr						
						SA	M	I A	na	aly	sis	; F	or	n													
Object								Ľ	Date											DWG	ND.						
Operation									ssue	d by										Page		d					
		G	θET	r .				Р	UT					JSI	Ξ				RE	PUT	JRI	N .	I	l	Su	mm Facto	ing up rs
Method description	c/ Step	80	GS 45	10	는 Add. for Handful	A weight >5 kg	G Step	80	PD	10 -	To Add. for Precision De Apply Force	An of strokes arine at	No.of places	Time of stroke, prip etc		Apply Force	ጅ Weight > 5 kg	o Step	80	PD 45	10	- Add. for Precision	Apply Force	D Rend+Arise			
	3	5	4	2	6	2	3	5	4	2 :	3 3	1	n	t	-	3	2	3	5	4	2	3	3 1	12	F	1	Total
	3	5	4	2	6	2	3	5	4	2	3 3	<u>'</u>		ļ	ļ	3	2	3	5	4	2	3	3 1	12			
	-			-		2	-						_				2	-			2	-		12			
			-									, 									-						
				_									_														
			-	<i>.</i>		-			-	<i></i>	3 3	·		ļ			<i></i>					3					
	-	,		-		2	-						_				2	-			2	-		12			
			-									, 									-						
	2			-		2	-			2			_			-	2				2	-		12			
			-	<u> </u>		<i></i>	_		-					ļ													
	-	,		-		2	-						_				2	-			2	-		12			
									-	-		í.		ļ		- <u> </u>	ļ										
	2					2	-			2		+	+	_		-	2	-			2	-		12			
				<u>_</u>		<i></i>			-	- h-		<u> </u>	·-	ļ	ļ		Ļ				<i></i>						
	2	6	4	2	6	2	1	6	4	2	2 2	+	+			1	2	1	6	4	2	2	1	12			
				-					-	-		4		ļ		- <u> </u>	Ļ				- 						
				-	_	-	-			-			+								2	-		12	_		
	3		-	<u>_</u>		<i></i>	_		-		3 3	<u> </u>	·-	ļ				3		4	<i>.</i>						
	2	6		_		2	1		4	2	2 2	+	+			2	2	1	6		2	1	1	12			
			-			-	Ŭ	<u> </u>	-	-		1				1			-	-	-	~	Ŭ.,				
												1				1	L										
Calculation:																		Tot	aln	et ti	me	(fac	tors)			

GET (G) has two variables

- Movement distance Distance groups
 - **10 =** $0 \le 10 \text{ cm}$
 - $\textbf{45 =} > 10 \leq 45 \text{ cm}$
 - 80 = > 45 incl. a supporting step
- Number of objects

single = **GS** handful = **GH**

CHALMERS

Supplementary activities

- APPLY FORCE (AF) is assigned when force must be applied in order to overcome a resistance.
- STEP (S) is applied when the distance group 80 is insufficient for a GET or PLACE.
- BEND (B) is applied when the trunk is bent to a level where the hands reach down to or below knee level and subsequent arias again.

CHALMERS	
UNIVERSITY OF TECHNOLOGY	

Peter Almström Technology Management and Economics

Repetitive activities

• SCREW	S
• CRANK	CA
• TO AND FROM	FA
• HAMMER	н
• READ	R
• NOTE	Ν
PRESS BUTTON	РА

Peter Almström Technology Management and Economics

Time units

The time unit in SAM is called Factor.

1 factor	= 1/20 000 hour
1 TMU	= 1/100 000 hour
1 factor	= 5 TMU
3 factors	= 1 cmin = 1/100 min
333 factors	= 1 min
5,6 factors	= 1 second
20 factors	= 1 mh = 1/1000 hour
20.000 factors	= 1 hour

CHALMERS

		Mov	ement distanc	e in cm
Basic activities		≤10	>10 ≤45	>45
Activity	Code	10	45	80
GET single	GS	2	4	5
GET handful	GH	8	10	11
PLACE direct	PD	2	4	5
PLACE precise	PP	5	7	8
Allowance	Code	Time		
PLACE with weight – wei	AW	2		

Supplementary activities	Code	Time
APPLY FORCE	AF	3
STEP	S	3
BEND	В	12

Peter Almström Technology Management and Economics

- **Begins** when the hand or the fingers start the movement of the object(s) towards the final position and **ends** when the object(s) have been placed in the final position.
- **Includes** movements and all adjustments of the grasp, changes of the direction of the movement, transfers of the object(s) from one hand to the other and corrections necessary to obtain the final position.
- Three variables: Weight, Movement distance and Precision.

CHALMERS

Peter Almström Technology Management and Economics

Repetitive activities

Repetitive activities										
*		Thread diameter								
SCREW		≤4	>4 ≤7	>7 ≤15	>15 ≤26					
per grip with	Code	4	7	15	26					
Fingers, light	SA	2	2	3	3					
Fingers, resistance	SB	3	3	4	5					
Screw driver, light	SC	2	3	4	-					
Screw driver, resistance	SD	3	4	5	-					
Yankee driver	SE	3	3	-	-					
Ratchet wrench	SF	3	4	5	7					
Ordinary wrench	SG	6	8	10	12					
Allen key	SH	3	4	6	8					
T-wrench	SI	6	7	8	10					

Repetitive activities

Repetitive activities				
		Length c	m in one d	irection
		≤10	>10 ≤45	>45
TO AND FROM	Code	10	45	80
	FA	2	5	7

CHALMERS

Peter Almström Technology Management and Economics

Repetitive activities

Repetitive activities	Code	Time
HAMMER – per stroke		
Light with wrist	HA	2
Heavy with forearm	НВ	4
READ – per term		
Read a term	RA	2
Read, compare terms	RB	7
Read a scale	RC	8
Control	RD	3
NOTE – per letter, digit		
Block letters	NA	5
Ordinary writing	NB	3
CRANK – per revolution	CA	3
PRESS BUTTON – per button	PA	2

Use of automatic tool

- Electric or pneumatic screwdrivers etc.
- Place the machine on bolt is PP.
- Secure the grip and push button to start is AF.
- Machine time (MT) is calculated or estimated.

CHALMERS

Put gasket in left hand Put axis in gasket

Assemble nut on axis

Assemble wheel on axis

Assemble locking washer

Use screwdriver to tighten nut

Check and put away assembly

Assemble nut on axis

Assemble wheel washer 1 on axis

Assemble wheel washer 2 on axis

Method description

	Technology															logy Management and Economic														
	SAM Analysis Form															Reg. nr														
÷										Date												DWG No.								
	GET									PUT USE RE										ETURN						Summing up				
																				I	PUT						Facto	ors		
			69		dful				PD		cision		i, gripseto		te, prip etc			B			PD		cision							
	g. 03		d. for Han	eight >5 kg	di		FU		d. for Prec	ply Force	of strokes.	of places	ne of strok		ply Force	eight > 5 kg	de		10		d. for Prec	ply Force	nd+Arise							
	o Ste	80	45	10	₽ ₽	Ň AW	ste Ste	80	45	10	PY무	₹ AF	٥N	Ň	Tin		₹ AF	× ∧w	ste	80	45	10	₽ P	d AF	a Be					
	3	5	4	2	6	2	3	5	4	2	3	3	1	n	t	-	3	2	3	5	4	2	3	3	12	F	f	Total		
				- 1	- °	- î	- T		1 T L	-	- T	1					Ľ۳.	÷.		۲ <i>°</i>		- ° -	<u> </u>				1 I			

6 1 3

8 1 2 ^{SC4}

18

 4
 2
 6
 2
 3
 5
 4
 2
 3

 4
 4
 4
 3

4 3

4 3

4 3

4

4

4

1

3 5 4 2 6 2 3 5 4 2

4

4

4

4

4

4

Peter Almström

CHALMERS

Peter Almström Technology Management and Economics

8

29

11

11 1 11

11 1

25

1

5 4 2 3 3

1 29

8

11

11 1 11

11 1 11

11

25

7

Learning objectives

- After this lecture the students will be able to...
 - Explain the historical development of PTS
 - Motivate the use of PTS
 - Select appropriate PTS for the task depending on length of work cycle and type of work
 - Use the SAM method