

Operations planning and scheduling

Yuji Yamamoto

PPU426

Today's topic

- What is operations planning and scheduling?
- How to cope with mismatch between demand and supply?
- Production planning
- Scheduling
- Job shop scheduling theories

Production planning and scheduling

Job Y Job X Job A

Job B

Example of scheduling for line production

Gant Progress chart (note: Job A = Model A)

What is operations planning and scheduling?

Operations planning and scheduling is the process of making sure that demand and supply plans are in balance, from aggregate level down to the short-term scheduling level.

How to cope with mismatch between demand and supply?

- Coping with supply side
- Coping with demand side

Cope with the mismatch from supply side

- Anticipation inventory
- Workforce adjustment (layoff/hire)
- Workforce utilization (overtime/undertime)
- Part-time workers
- Subcontractors

Cope with the mismatch on demand side

Demand management:

Try to change the demand pattern so that the supply side can cope with it easier

- Promoting pricing
- Reservation
- Complementary products
- Backlogs
- etc.

Workforce planning strategies

Level strategy

Chase strategy

- Overtime cost
- Undertime cost

- Layoff cost
- Hiring cost

Production planning and scheduling

What model to make until when?

Job W Job A

Job X

Job Z

Job B

Job X

Job C

Job Y Job X Job A

Job B A Job B

Production planning

Production planning and scheduling

What model to make until when?

Job W Job A

Job X

Job Z

Job B

Job X

Job C

Job Y Job X Job A

Job B A Job B

Example of scheduling for line production

Gant Progress chart (note: Job A = Model A)

Example of scheduling for work stations

Gant Workstation chart

						Ti	me			
Workstation	7 A.M.	8 A.M.	9 A.M.	10 A.M.	11 A.M.	12 P.M.	1 P.M.	2 P.M.	3 P.M.	4 P.M.
Operating Room A	Dr. Jon	Adams		\leq		Dr. Aubre	y Brothers			Dr. /
Operating Room B			or. Gary Cas	e		Dr. Je	ff Dow			Dr. Madelin
Operating Room C		Dr. J	ordanne Flo	owers					Dr	. Dan Gillespi

Today's topic

- What is operations planning and scheduling?
- How to cope with mismatch between demand and supply?
- Production planning
- Scheduling
- Job shop scheduling theories

Based on supplemental material

Job shop schedulering problem

- one machine situation

Different job has different process time and due date...

In which order to produce?

Possible objectives:

- Minimize number of delay
- Minimize the largest delay
- Minimize average delay time
- Minimize flow time
- Minimize idle time
- etc.

Terminology

Process time: Time a machine ta	ikes to do	а	5	6	7	
certain job			If seque	ence A -	B - C,	
Flow time:	Flow time	e Job A	5			
Time a job spends	"	Job B	5	6	•	
in the system	"	Job C	5	6	7	

Terminology

Makespan:

Time to complete all jobs

5+6+7

= Flow time of the last job

Tardiness:

How much the flow time differs (delays) from the due date

Specific sequencing rules

- FCFS (First-come, First-served)
- SPT (Shortest processing time)
- EDD (Earliest due date)
- CR (Critical ratio)

Comparison of sequencing rules

FCFS (First-come First-served)

Sequence	(Flow time) Completion Time	Due Date	Tardiness
1	11	61	0
2	40	45	0
3	71	31	40
4	72	33	39
5	74	32	42
Totals	268		121
	Mean flow time $= 26$	68/5 = 53.6,	
	Average tardiness $= 1$	21/5 = 24.2,	
	Number of tardy	iobs = 3.	

SPT (Shortest Processing time)

Job	Processing Time	Completion Time	Due Date	Tardiness
4	1	1	33	0
5	2	3	32	0
1	11	14	61	0
2	29	43	45	0
3	31	74	31	43
Totals		135		43

Mean flow time = 135/5 = 27.0, Average tardiness = 43/5 = 8.6, Number of tardy jobs = 1.

EDD (Earliest Due Date)

Job	Processing Time	Completion Time	Due Date	Tardiness
3	31	31	31	0
5	2	33	32	1
4	1	34	33	1
2	29	63	45	18
1	11	74	61	13
Totals		235		33

Mean flow time = 235/5 = 47.0, Average tardiness = 33/5 = 6.6, Number of tardy jobs = 4.

CR (Critical Ratio)

CR = Due date – Current time Processing time

- 1. On the current time, calculate CR for each job
- 2. Choose the job that has the smallest CR
- 3. Erase the job and update the current time
- 4. Go to step 1

Note: If a certain CR is minus (delayed), chose that job first. If more than one jobs are minus, chose based on SPT.

-	Curre	ent time: $t = 0$		
	Job	Processing Time	Due Date	Critical Ratio
	1	11	61	61/11 (5.545)
	2	29	45	45/29(1.552)
1st	3	31	31	31/31(1.000)
	4	1	33	33/1 (33.00)
	5	2	32	32/2 (16.00)

	Curre	ent time: $t = 31$	Due Date -	
	Job	Processing Time	Current Time	Critical Ratio
	1	11	30	30/11 (2.727)
2nd	2	29	14	14/29 (0.483)
	4	1	2	2/1 (2.000)
	5	2	1	1/2 (0.500)

	Curre	ent Time: $t = 60$		
	Job	Processing Time	Due Date – Current Time	Critical Ratio
	1	11	1	1/11 (.0909)
3rd	4	1	-27	-27/1 < 0
4th	5	2	-28	-28/2 < 0

Note: If a certain CR is minus (delayed), chose that job first. If more than one jobs are minus, chose based on SPT.

CR (Critical Ratio)

Result:

Job	Processing Time	Completion Time	Tardiness
3	. 31	31	0
2	29	60	15
4	1	61	28
5	2	63	31
1	11	74	13
Totals		289	87

Mean flow time = 289/5 = 57.8. Average tardiness = 87/5 = 17.4. Number of tardy jobs = 4.

Rule	Mean Flow Time	Average Tardiness	Number of Tardy Jobs
FCFS	53.6	24.2	3
SPT	27.0	8.6	1
EDD	47.0	6.6	4
CR	57.8	17.4	4

Theorem:

- SPT is the rule that minimizes mean flow time
- EDD is the rule that minimizes largest lateness

(See the mathematical proofs in the supplement material)

Which schedule makes the shortest makespan?

Johnson's rule:

Job *i* precedes job i + 1 if min $(A_i, B_{i-1}) < min(A_{i+1}, B_i)$

 A_i = Processing time of job *i* on machine A(or 1) B_i = Processing time of job *i* on machine B(or 2)

Johnson's rule:

Easy way to implement this rule:

- 1. List the processing time for all jobs for two machines
- 2. Find the smallest processing time.
- 3. If it is for the first machine, put it in the first. If it is for the second machine, put it in the last.
- 4. Remove the job in the list.
- 5. Go to 2.

Johnson's rule:

Johnson's rule:

